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SUMMARY

In previous papers 1t has been shown how the functional
equation technique of dynamic programming could be applied to
derive variational relations for Green's functions. In this
paper we apply the method to the variational problem yilelding

the equation
(pu')' + (r(x) + Aq(x))u = v(x), wu(a) = u(1) = 0.

The introduction of the parameter )\ enables us to study the
resolvent operator, and thus to derive variational relations
for the characteristic values and tne characteristic functions

of the associated Sturm-Liouville equation.
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FUNCTIONAL EQUATIONS IN THE THZORY
OF DYNAMIC PROGRAMMING—X:
RESCLVENTS, CHARACTERISTIC FUNCTIONS AND VALUES

Rictard Rellman
Strerman Lehman

1. Introduction

In previous papers, we lL.ave shown !ow tle functlional
equation technique of dynami~ programming can te applied to
derive variationgl relations for xernels and Green's functions.

In (1], the Green's function assoclated with the second order

equation
(1) u” + q(x)u = 0, u(a) = u(l) = 0,

was discussed, while in '4], analogous metiods were artplied to
partial differential operators to obtain the Hadamard varia-
tional formula. 1In [?], the Fredheolm integral ~quation was
treated by similar means, and Jacobtl nmetrices were discussed
in [(3].

In this paper, we wisn to present ~one
extensions of these results. Introiucing the nparameter A\,

we consicer the general equations
(2) (p{x)u*)* + (r(x) + rq(x))u = 0, u(a) =0, u(1) =0,

ootaining, as in the napers cited alove, variutional eqQuationc
for the resolvent operator as a fun-tion of =z2. Utilizing the
meromorphic nature of the operator as & fun-tion of A, we are

able in this way to derive variational equations for the
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characteristic values and functions.

Corresponding results are ottained for the vector-matrix

system
(3) (P(t)x')' + 2Q(t)x = O.

In both cases, certain assumptions have to be made con—
cerning the coefficient functions, q(x) and Q(t), in order
to be able to consider the differential equations as the Euler
equations of assocliated variational problems. Since, however,
we know, from the results of Miller and Schiffer, 7], con-
cerning Green's functions for general linear differential
overators of order n, (where quite different methods are
employed) and from corresponding results for Fredholm operators
and Jacobi matrices, that the relations obtained hold under far
wealer assumptions, the interesting problem arises of deriving
the more general results by veriational techniques. In this
paper, we present a method of analytic continuation which
reduces the case of continuous q(x) to that of positive
cont:nuous q(x), and tre case of continuous symmetric Q(t)
to positive definite Q(t).

In a separate paper, [=], we have sketched ex*ensions of
this technique of analytic continuation which enable us to
treat non—selfadjoint differential operators and non-symmetric
matrices by means of variational methods.

Finally, in a brilef section at the end of the paper, we
indicate how similar methods may te applied to obtain corres—

pronding results for Fredholm kernels end the associated
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characteristic values and functions.

2. Varlaticnal Prot!lem

Consider the ! oundary wvalue problermn
(1) (p(x)u')' + q(x)u = v(x), a <x <1,
u(a) = 0, u(i) + au'(1) = O.

We shall assume tiat p, q, and v are continuous functions
on the closed interval /a,l.. If tre ccrresrondins Sturm—
Liouville problem wit:h q replaced 'y N and v by O
does not have 1 as a claracterlstlic value, then the unique

r

solution of (1) can be represented in thec form

(2) u(x) -/1 K(x,y,a)v(y)dy.

a

The function K(x,y,a) 15 alled t'e Green's function for tie
boundary va.ue nroblem (1). We wis: to study t'e derendance
of K upoa a by means of the function:] equation metiod of
dynamic programming.

We imbed (1) in the systenm
(3) (p(x)u')' + alx)u = v(x), 3 < x <,
u(a) = ¢, u(l) + au'(1) = C.
A solution of this system can e exrrecsed in tte form

(%) u(x) = uq(x) + cp(x)
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where uo(x) 18 a solution of (1) and hence equal to the

right side of (2) while g(x) 15 a solution of the system
(=) (p(x)g')' + q(x)g = 0, g(a) =1, (1) + ag'(1) = 0.

We also consider a variational problem assocliated with the
system (3), the prcblem of maximizing J(u,v) over all u for

which u(a) = ¢ where

() Ju,v) = /1 (q(x)u® = plx)ur® - 2uv(x))ax
a
- &) (u(1))2.

This variational problem has the prorerty that a u ylelding
tr.e maximum is a solution of the system (3). To prove this,
we replace u ty u + «n in (), where n(x) 1s a function
such that n(a) = 0. We obtain

J(u 4 en,v) = J(u,v) + 26tu/71 (qun — pu'n' — vn)dx
a

- Bl ua)n(a)

. 62[!271 (qn® — pn'2)dx — pgl) n(l)zl-

In order to have u yileld the maximum, the & term must

vanish for all functions n for which n(a) = O. Hence

7t (qu+ (put) = v)n(x)dx - E%%l'“(l)(“(l) +au'(1)) = 0.

a
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Consequently, a u ylelding the maximum must satisfy the
boundary condition at 1 and must satisfy the differential
equation in the interior of the interval [a,1]. Hence, a
solution of the variational problem provides a solution of the
boundary value problem (3).

In order to use the variational approach one must make an
assumption on p and q sufficient to guarantee the existence
of a maximum. It 1s sufficient, for example, to assume that
p(x) 1s positive on the closed interval [s,1] and that the

smallest characteristic value of the Sturm-Liouville prob em
(pu')' + \qu = 0, wu(a) =0, wu(l) + au'(1) =0

is larger than 1. If q(x) s uniformly positive,

q(x) >a > 0, over 0 < x ¢ a, this condition holds if a 1s
sufficiently small, or if Jd 18 sufficiently large. This
assumption guarantees the existence of a unique maxinum of
J(u,v). In §7, we shall show by analytic continuation how the
results we prove can be freed of this restrictive hypothesis.

At the moment we want q(x) to be positive so that we can easily

locate a region within which no characteristic values occur,

3. Dynamic Programming Approach

We now let

f(a,c) = max J(u,v)
u(a)=c

and derive a partial differential equation for f ty means of

a technique of dynamic programming. We regard u as describing
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a policy. The variable c¢ describes the state of the system
at a. The result of following the policy u for a time
interval [a,a + 4] 16 to transform c 4into a new initial
state u(a + &) for the interval [a + A,l] . According to the
principle of optimality, an optimal policy u over the interval
"a,1] with initial state ¢ must have the property that 1t 1is
an optimal policy over the subinterval [a + &,1] starting with
initial state u(a + A). Translated in‘o a formula, the
principle of optimality ylelds the equation

f(a,c) = max {t‘((a +4), u(a + g))
u(a)=c

*({raﬂ) (q(x)u(x)2 = p(x)u'(x)2 - %(X)V(X))dx}-

We proceed formally, assuming that f(..c) has continuous
partial derivatives and that the maximizing u has a continuous

derivative. Then as (0 — 0,

f(a + 4, u(a + 6)) = f(a,c) + g__a{(a'c)
+k§§(a.0)u'(a)o + o(a).

Consequently, as A — 0, we have

O
)

—g(a,c) = max {

u(a)=c |

(a,c)u'{a) + q(a)c?

)
@]

~ pla)ur(a)® — 2cv(e) + o(1))?,

The quadratic
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M. ., 2
5zu' —p(a)u
takes its maximum value at
1 L
' = -— c).
u s=TaY 53 (a,c)
Hence we obtain the partial differentiul equation
ifr 1 ¢ 2
(1) - 55 (a,c) = (Z£(a,0))% - 2cv(a) + c%q(a).
tp(a)
4, vVariation of tre Oreen's Function
Let u be the function which maxinmizes J(u,v) for
given a and c¢. By ustins (2.2) ard (2.+), we ~an find an
equation which connects f(a,c) witi. tie Green's function
K(x,y,a). We have
(1) f(a,c) -b/nl (qu2 — pu't = 2uv)iy — L%Ll (u(1))°
a
21 .
=/ ulqu + (pu')' — vidx — uvdx — u(1):(
a "1
#ule) (ur(a) - B (u(1))?
- —%/”1 uvdx + cp(=)u'(a) - pél u(1)e(1) + au
2
71 A1 2
- =/ " ugvdx — o Qv iy 4 ';(7\u6(1) + |
a a
Using the fact that Uy satisfiee (0.1) and @ satisfies (2.

we obtain Ly integration 'y partc

Vu'())



J"l gvdx -L/n G((pU6)' + quo)dx
a a
=‘/a“ ug((op')' + ae)ix + g(1)p(1)uf(1)

+ o' (a)r(a)uyla),

Sin e uo(n) = 0, ¢(z) =1, and u ond @ satisfy tle sanme

.omogenecus iouniary condition 2t 1, we con-lude tlhat

(<) S ey = = ldugla) ¢ (80 (1Dug (1) = 81 (R0 ug(2))
= — {2 )ugla)

Thur, tle se-ond and trlrd te:r on tie lant lipne of (1) are

equal. 1! turnz cut to te more convenient to use the inteyral
exrreasion. We ! ave
/)T ’)\ F

(%) Cla, ) = - T UV iz T eviy + 2 (a)e'(a)

14 o I '

a g

11
- = 7L Ty )v(x)viy)axay — 20, P lgvax + c®p(a)g(a).

We observe t'at we can exypress g ‘n terms of a partial

derivative of K. By (2), we have



/)l glylv(s)dy = - olalup(-
a

for all continuow functiorns v,

Y

-
“«
e

(4) gly) = - nla) = (r.00

Combininc tre exrreacion no
the partizl differventls) rguation
equating terme indevendent nt'

71 1 K v oaYulade{or) o
S S Gonadv ()
a a

Now i1f w2 "equate coef{ficients" o

relation

(5) Fix,; )=

oa

Trhis formal equating of oe 700 1.
use of the symmetry of t'ao Toeop,
such as continutty of

9}( \ : \1

We shall prove t! i- {n ~
In the consideration »f t.

we have not concaiidered tie . cun:

v

()
f‘(",-‘\
(1\ W

Vo e
~(a)
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u'(l) = 0, The condition u(l) = ¢ corresaponis formally to
a = 0; the condition u'(l) = O corres:onds formally to

a = o in te cendition u(l) ¢+ au'(l) = O, If ‘n the varia-

tional nioblem of maxirizine J(u,v) we omit tie terr

and add *tre conctriaint u(l) = 0 or u'(l) =« 0, respectively,
ti.e development proceeds as vefore, excenpt all terms which

involve a vanis... The final results o talined are the same.

~. Justification of Equating Coefflclents

™e formal rrocedure used in the derlvation of (4.5) :an
te Justified ty tie fcllowinz lemma.

lema. Iet Flx,y) be = continuous function on thre

region 1 < x <1, a « y <1l and supose trat F(x,y) = P(y,x).
Jten 10

) N ]

) (o, vy )vl{yddvdy = 0

' J

for all -ontinuou. functions =, *.o fun-:tton F(x,y) & O.

Proo’. i L, we s:ow the t v nl.'es on %t .e Jlagonal,
1.e., BE\7,7) = o do ¢ 1s, we ti,o o« sequene of continuous
functions v_ with -« tositlve an: *.ndins to O, eact of
whict vanisies tdenti: . lly cutslde tie fnterva)l T —€, T+ 6:
ind Intecrates *o 1 over *te portion of T - e, T o4 e Wtk
1c in tie Interval  Ta,l . Fasslns tc ‘re lrit, we find that
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To prove that F(§,n) = O when 7 o we use functionc
Ve With e < ' = n'/2 whicl intecrate to 1 over tle
portion of [ —€,7+ € in tie interval  "a,1  and also
integrate to 1 over the portion o' ‘n —e,n 4+ € 1in 2,1
but which vanish ldentically cutc!ie tiese two intervals.

Letting € —» 0, we find
F(3,n) + F(1,3) + F(7,7) + F(n,n) = C.

Since P(C,0) = F(n,n) = 0 ani F(7,n) = F(n,3), we tave
?(:,q) = O,

6. Change of Varigule

In this section, we shall mae 1 ~rance ¢f vartalle w' !
leads to a different exrression for @(x) ani hence an alte:—
nate expression for the variation of t:e Green's function. We

make the change of variat!le

U - c(l +a - x) .

(1 + a - a)

so that w(a) = 0 and w(l) +# aw'(1) = C wten u catisries
the boundary conditions uf(a) = -, u(l) + au'(l) « 0, (Thic
transformation 18 valid also in ~28¢ a =« 0; f(or t:» coniltion
u'(l) « 0, 1.e., a = @, we sct u = " + W),

Then by (2.7),
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(
J(w,v) + 2(:(/)1 Loai e x]q(x)w(x)dx
a 'l +a - a)
' \
2//1 E'(X!N'(X) jj?‘(——?i‘Aﬂl V(X) ,l+a—x; dx
a 1 +a-n1 i (1 +a - a
-, n(1)w(d
1l +4a-2a
~ > A
e </zl 240X o(a )y — 1 ox) - dx
& \1 +a - aj 1 (1 +a—-a)“

1(1)a l

(1+0—-8)|

/

e second Intepmral by Intaegration Ly parts, we

ot=tain
( = -2
1 +a — " rt(x !
J(qu) = J W,v — - Q(\) - + F(a,c,")
(L +a - ) +a - a
\ )
tera Foois inidejyencent of v oand o ou. Hence
( -
| (1 + a - x
r(i,0) = Mo (u,v) = Mox Jiw w ' ql(») = 7' ()
() = w(a)=0 11 +a - aj
+ R, )
MUSEREINE IR s N oS o At n
& = ) )
4
- a - '(" l
,Jz:,/l (Y‘J")\J'J(~'v\_ ,____L q(J\ __.X A.L.L__;-Qy.
g (Y + a — vy + Qa4 -1

lanee
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u "‘/71 K(x,y,a)v(v)dy + ;=22 = X
a Ll +a — 1
r -
71 . '(l + a - v\ r.(uy 1
-/ " Klx,y,a) |=————21 q(y) - ——L— ayr.
a ;.‘\1 +a - u T+ a - n _ }.
Thus, by (2.4),
- | |
l +a - »x 1] i a — S .
g(x) = cEO el —J‘/ K(x,y,n) i__’_____i-q(:") R ()
l1+a-a @ I +a -a) 1 +a - a

Subsituting this expression into («. ), we “ind anotier for—ula

for the variation of tie Qreen's fun-ttlon,

/ . 0o \
(1) Xinpe) . 2 (1 i I S (PG R 10 A Bl q(;)
- J LA AN B N
o8 p(a) l] +a -2 = _kl*b—-(:}
ey jl
D+ a - 1
- J
7 ~
vl + aQ — } ., ) o+ oQ ! '
| o e RN
kl *’O——-J 52 [ + Q _f}j
() |
+ a --
- /
The cases u{(l) = C ani u'(i) & 0 e wauntl - onilod, Do
refults are what would ‘e oitalnel!l o tetn- a = ! -~

letting a@ — 00 resjectively.

7. Analytic Continuation

In order to extend tre foregoing ap:rroach to tle general
case, we shall employ the method of analytic ~ontinuation.

Consider the equation
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(1) (pu')' + (2 + q(x))u = v,
u(a) = ¢, u(l) + au'(l) = 0,

where £ 18 a positive quantity chosen large enough so that
z +q(x) >d>0 ¢n [a,l].

Purthermore, we know from the Sturmian comparison theorems
that z oan be chosen large enuvugh 8o that A =1 1s not a

characteristic value of the Sturm-Liouville problem
(2) (pu')' + Mz + q(x))u = 0,
u(a) = 0, u(l) + au'(l) = 0.
It follows that the inhomogeneous equation

(3) (pu')' + (z + q(x))u = v,
u(a) = 0, u(l) + au'(l) = O,

will then have a unique solution.

The Green's function associated with this problem will be
a function of z. If we can show that this function is a
meromorphic function of z, 1t will follow that the relations
originally obtained under the assumption that =z 1is
sufficiently large will actually be valid for all 1z distinct
from a set of poles.

In particular, the relatioris will be valid for z = O,

provided that /A =1 18 not a characteristic value of the

equation
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(4) (pu')' + q(x)u = v,
;a) = ¢, u(l) + au'(l) = O,

Genemlly speaking, the relations will be valid whenever they

make sense.

8. Analytic Character of Green's Function

Although it follows from welli-iknown results in the theory
of linear differential equations that the (Green's function 1s
a meromorphic function of 2z, we shall outline a proof here
for the sake of completeness.

o simplify the notation let us write o(u) = O for the
boundary condition wu(l) + au'(l) = 0. Furthermore we
observe that the following considerations also cover the
boundary condition u'(l) = O, 8o that we could also take
o(u) = u'(1).

To begin with, the two solutions of

(1) (pu')' + (z + q(x))u = O,
determined by the initial conditions

(2) ul(a) - l) ui(a) - Op

“2(‘) - 0, ué(a) -1,

Y

are entire functions of z for x in [0,“‘. Also for
fixed x, their derivatives ui and ué are entire

funotions of z. Hence, in particular, a(u2) is an entire



P-1332
Revised 11-14-58
-16-
function of z whieh does not vanish identically.

Concerning p(x) and q(x), we are assuming, as before,
that p(x) > d; > O in [0,1], that 1t has an integrable
derivative, and that q(x) is integrable in {a,l], and
uniformly bounded.

The general solution of
(3) (pu' ) + (z + q(x))u = v
can be written

(4) u = 0yu (x) + e uy(x) --—f-3u”" uy (X)uy(y buy (3 )uy(x) | v(y)dy .
pLa) a

Imposing the boundary conditions
u(a) = 0, o(u) = O,
we see that this particular solution has the form

u =‘/”1 K(x,y)v(y)dy
a

where K(x,y), the deatred Green's function, is given by
oy Juy(y) = uy(y)e(u,)

1 1772 1
K(x,y) k= l (ﬂuz)' 2 u2(x)l ac<y«<x,

-

-

L ou e () = up(x)e(uy)
" p(a) [ o7 |

u(y), a <x<y.

We see that for any x and y 1in [a,l], K(x,y) and its

partial Jerivatives with respect to x,y and a are mero-
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morphic functions of z. Alsc, we observe that this formula
provides a proeof for the symmetry of the Green's function, a

property which we have used in the previous sections.

9. Alternate Derivation of Expression for g(x)

The explicit representation for K(x,y) given above

shows that

1 U(ul )uz(y) - ul(y)o(u2)
e " 560

a(u277

wlx

It follows then that —.p(a)ég(a,y,a) is the solution of the

two-point boundary value problem
(pu')' + qu = 0, u(a) =1, o(u) = O.
Hence we have

#(y) - - pla)sS(a,y,a).

The extension of the relation in (1) is the keystone of
the treatment o Mi)ler and Schiffer in [b] , and the analogue
of this relatior for partial differential ojperators 1s

essential in the derivation of the liadamard variational formula

given in [4].

10, VvVariation ¢f Characteristic Values and Characteristic Punctions

Consider the Sturm-Liouville problem
(1) (pu')' + (q(x) + Ar(x))u = v(x), a<x<1,

u(a) = 0, u(l) + au'(1) = 0.
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Thie problem ray a unique solution, vhen A 18 not a charac—

teristic value, which 1s given 'v

o

u(x) = Flx,y,n,a)v(y\dy.

a

-

e functieon & called the resolvent, 13 a meromorphic

fun-tion of N with pcles at the :haracteristic values

SEIR P x}, ce. . I % (x) s the characteristic function
asg8oclated wit:. tte rlizracteristi. value X then KR has

!

the rerrecentation

() “Gvo,a) e 3 -
.

T rrotlom (1) 1s ottalned from (2.1) ty replacing q(x)

ryooqlx) + ar(:). Fror (4.7) we ortain t'.e equation

3e(x,v,»,a) 2 IR
(Eh (,7,2,0) n(a) 3; (a,y,»,a) %: {x,a.n,a).
,;" ¥ /. \d
112 equation 1s valild for all X w A, without any assumptions
on q(x) and r{x) exrcert ~ontinulty as tas 'een shown tv

analyti: -ontlnuation in °

Com! ining (2) withk (2), we find

( . . 3“: (=0 sV (x) |
¢ 00,00 e TR e S
S NN G WS Wb AR NN
1 ‘ J
( @ "(A)Yk(y)\lloo ¥ (x)Y(a)
= pla) 3 2
\r\-l A - )\k K=l A - \k )
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Letting » — . and equating oot ftclents of (. — >\._\‘2 15
find
ka .
- 2
-5 7
(%) 5 p(a)( k(a)) .
-1 .
By equating coefficlents of (X — \k) we {1nd
o
v, (x) o < o), (a)
o — L
(5) ~a pla) k(a) 2 N N
J - 1
We can also derive ex;reac’'on- o~ the varistion ol t. .
sums
@ v ()Y (¥)
Sn(x!yia) - 2 - n ’ (n - 1' :v }r )
Km] A,
Since
1 L B e
= - - - T - »
X LTX; X: ;F N:
we have
00 e
R(x)y')\)a) - - 2 ‘(‘q(‘y‘r.vr"i\\
n=]l °
Consequently,
98n ;Sl(ﬂ‘p"'}l; "‘(\: (‘Y‘n:o"\
= (x,y,8) = — p(n) o — -
a ’ ‘14‘.-'”&.1 > Ty
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11. Matraix Case

Analogous results oan be obtained for a (reen's function

associated with the vector-matrix aystem
d d \
(1) Felt(e)gpx(t)) + Q(t)x(t) = y(¢r), a <t <1,

x(a) = ¢, x(1) + Bx(1) = O,

where P, Q, and B are n »n matrices and x, y, and o
are n-dimensional vectors. we shall assume that P, Q, and

a,l; and that

y are continuous on the closed interval |

P(t) has an inverse for each t. Also we shall assume that
P, Q, and F(i)B are symmetric matrices so that the system
is self-adjoint.

Por notation, we denote the tra. 3, 08¢ of a matrix A by
A* and we use (u,v) to denote the inner product of two
vectors u and v.

Associated with this boundary value proulen there is the

variational! problem of maximizing J(x,y) wher:s

yl i

J(‘r.Y) '/ {(Q},X) - (Pk,l) = 2(yrx)J dt

a
- (p(1)Bx(1),x(1))
subject to the condition that x(a) = ¢. Let

f(a,c) ma x J(x,y).
x(a)=c

As in the scalar case, a vector x(t) which yields the maxi-
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mum must be a solution of the boundary value problem (1)
Proceeding as in §3 one can use the principle of
optimality from dynamic programming to derive the partial

differential equation

4_§ — 2(c,y(a)) + (Q(a)e,c)

T»,

(2) — 22(8,0) = 1(F(a

where {f ¢, are the components of ¢ then

C1sCpsern,

4 A

N VW
" al™
(=)

VW
(o]
QL
(2]
n

W
e .

O
0

ﬁ
o}

/

We wish to use this partial differential equation to
study the Green's function for the system (l1). The (reen's

function 18 an n x n matrix K(:,3) for which
= /)1 $ ¢+
(3) x,(t) J,~ Kltie)y(s)de
1s a solution of (1) with xo(a) » O. A8 before a solution
of (1) with x(a) « ¢ can be written is 4 8sum

x(t) = xo(t) + $(t)c

where $(t) 18 the n x n matrix function which 18 the

solution of
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(4) S(E(UERE)) v «(t)E(t) - o,

Ha) = 1, J(1, + BH1) - 0.

Since x(t) 18 the maximizing vector for the variational

problem, we obtain

(5) fla,c) = =, 7% (y(t),x(t))ar — (p(1)B(1)x(1),x(1))
a

+ (p(a)x(a),x(a)) — (P(1)x(1),x(1))

S = T ekt ae = 70 (r(1),3(t)e )at
1 a

+ (r(a)xy(a),c) + (P(a)F(a)e,c).
Also

LI
a

(n) "h(y(e) Be)e)ar = 7 (x (0),$er(0)F(E)e + Qe )at
2 .

+ (P(1)x(1),2(1)c) - (P(a)xy(a),d(a)c)

~ (xy(1),F(1)H1)e) + (x,(a),P(a)F(a)c)

= (Fa)xy(a),e) = (F(1)Bxp(1),4(1)e)

+ (#(1)xy(1),B4(1)c)

s (i’(a)io(a),c)

because of the assumption that P(1)B 1is symmetric.
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Hence by (3) and (5),

] 1 .
/“uo (K(t,s)y(s),7(t))dsdt
a a

f(a,c) = —

= 2,71 (y(e),B(t)e)ae « (r(a)f(a)e,c).

a

Alvo it 18 possible to express $ in terms of a partial
derivative of K. B8y (o),

S (e des)y(s))at o — (c,r(a) 7t Kt 5,a)  y(s)da)

G’ ot

a a t=a
for all contiauous vector functions y and all ve:tors c.
Hence,

(7) T(8) = — P(a)5(t,s,a)

it=a

Next, we combine the above expression rnr f(2,c) with
the partial differcntial equation (2) a~.d eq:ite the terms
independent of ¢ to obtain

c/)l(/r’1 (iﬁ%;gg‘ilY(ﬂ).Y(h)fdsdt
a

= (FYa) 7 ety (e, 7 Be(t)y(tan,
a a
or
A

(8) (/71/71 {‘j—g(h',a) "§(t)f_l(&)§'(°)}y(s).y(t) dsdt - O.

a & g ,

Jiow we '"equate coefficients” to conclude that
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(9) 22(t,8,a) = He)rH(a)3e(s).

This formal argument can be justified by the fo.lowing result
corresponding to “he lemma proved in §5.

lemma. Let M(t,8) be a continuous n » n matrix

function for a ¢ 8 1, at ¢l and supposs that M has

the syrmelry projerty

M*(t,3) = M(s,t).

(/01(/)1 (M(t,s)y(s),y(t))dadt = ©
a a

for all continuous vector functions v, then M(s,t) = O.

We omit a proof of this lemma because one can be gcon-
structed in a way qulte similar to that employed in §5. It
18 also rot difficalt to verify that th: matrix function in
(6) has the required symnmetry property Lecause the system ia
self-adjoint.

combiatng (7) and (¥) ws obtalin

(10) Z(,8,a) - Z(t8,a))  r(a)fi(c,0,a

)' .
sS=a t=a

The problem we have Jjust “reated (72es ot cortaln as a
special case the problem with the boundary condition x(1) = O.
However, o1y & small change {s required to handle this

problem by the sarne method. In the definition of J(x,y) one
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can omit the term — (F(1)B(1)x(1),x(1)) and for the maxi-
mization problem add the constraint x(1) = 0. The remainder
of the argument is qQquite similar aid the final result
obtained, equation (10), is the same.

The approach by way of a change of variable as in éc can

also be followed in the matrix case. Set
x(t) = (I + (1= ¢t)B)(I+ (1 —a)B)tc+ w(t).

This transformation l.as the property that if x(a) = ¢ then
w(a) = 0; and i1f x(1) + Bx(l1) = O, then w(l) + Bw(l) = 0.
Here we must also make the additional assumption that the
inverse (I + (1 — a.)B)_1 exists. Proceeding as in §., we

obtain the equation

F(t) = [T+ (1-t)B —(/a/’l K(t,8)[a(s)(I + (1 — &)p)

- é%(?(l))B]da

(I + (1 —a)B)7?,

which allows the derivation of another expression for ;}%.

,m.f‘
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2. tegral tions

Let us now indicate briefly how the same formalism may be
applied to integral equations.

The equation

(1) u(x) = v(x) + x,{’l k(x,y)u(y)dy

has the solution

(2) u(x) = v(x) *{’1 K(x,y,A\)v(y)dy,

where K(x,y,\) 1s the Fredholm resolvent.

If k(x,y) 1s positive definite, we can consider (1) to
be the Euler equation corresponding to the problem of minimi-
zing the Qquadratic functional

(3) Q(u) = x,{’%{l k(x,y)u(x)uly)dxdy
+ 2‘/”1 u(x)v(x)dx --0/’1 u2(x)dx.
a a

Regarding the minimum over u as a function of a and
functionali of v, we can proceed very much as above. A
derivation of the variational equation for Fredholm resolvent
1s given in [2]. Continuing as in §34, we can derive
variational equations for the characteristic values and

functions.
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